UUCMS NO

B.M.S COLLEGE FOR WOMEN AUTONOMOUS
 BENGALURU -560004

END SEMESTER EXAMINATION - APRIL/ MAY 2023

M.Sc. Mathematics - I Semester REAL ANALYSIS

Course Code: MM102T

Duration: 3 Hours

QP Code: 11002 Maximum Marks: 70

Instructions: 1) All questions carry equal marks.
2) Answer any five full questions.

1. (a) Prove that $f \in \mathcal{R}(\alpha)$ on $[a, b]$ if and only if $U(P, f, \alpha)-L(P, f, \alpha)<\epsilon$, for $\epsilon>0$ however small, over the partition P on $[a, b]$.
(b) If $f_{1} \in \mathcal{R}(\alpha)$ and $f_{2} \in \mathcal{R}(\alpha)$ on $[a, b]$ then prove that $f_{1}+f_{2} \in \mathcal{R}(\alpha)$ on $[a, b]$.
(c) Show that $f(x)=-x$ is Riemann integrable on $[-k, 0], k$ is a positive constant.
2. (a) If $f \in \mathcal{R}(\alpha)$ on $[a, b], m \leq f \leq M$ and ϕ is a continuous function on [$m, M]$, then show that $\phi(f) \in \mathcal{R}(\alpha)$ on $[a, b]$.
(b) State and prove second mean value theorem. Further use it to evaluate

$$
\begin{equation*}
\int_{0}^{2}(2 x+5) d\{[x]-x\} \tag{7+7}
\end{equation*}
$$

3. (a) Define a total variation function. Calculate the total variation function of $f(x)=x-[x]$ on $[0,2]$, where $[x]$ is a greatest integer not exceeding x.
(b) If f is bounded and integrable on $[a, b]$, then prove that there exists a function F defined as $F(x)=\int_{a}^{x} f(t) d t, a \leq x \leq b$ is continuous on $[a, b]$. Furthermore, if F is continuous at $x_{0} \in[a, b]$, then show that F differentiable at x_{0} and $F^{\prime}(x)=f\left(x_{0}\right)$.
(c) If $f \in \mathcal{R}(\alpha)$ on $[a, b]$ then show that $f \in \mathcal{R}(c \alpha)$ on $[a, b]$, where c is a nonzero real constant.
4. (a) State and prove Cauchy's principle for uniform convergence of sequence functions

$$
\left\{f_{n}(x)\right\} \text { on }[a, b] .
$$

(b) Test for uniform convergence of $\left\{f_{n}(x)\right\}=\left\{x^{n-1}(1-x)\right\}$ on $[0,1]$.
(c) If a sequence of functions $\left\{f_{n}(x)\right\}$ converges to a function $f(x)$ defined on $[a, b]$ and $M_{n}=\operatorname{Sup}_{x \in[a, b]}\left|f_{n}(x)-f(x)\right|$. Then prove that $\left\{f_{n}(x)\right\}$ converges uniformly to $f(x)$ on $[a, b]$ if and only if $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.
5. (a) Let $\left\{f_{n}(x)\right\}$ be a sequence of differentiable functions on $[a, b]$ such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for some x_{0} on $[a, b]$. If the sequence $\left\{f_{n}{ }^{\prime}(x)\right\}$ converges uniformly on $[a, b]$, then show that $\left\{f_{n}(x)\right\}$ converges uniformly to a $f(x)$ on $[a, b]$ and $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=f^{\prime}(x)$.
(b) If a series $\sum f_{n}(x)$ converges uniformly to a function $f(x)$ on $[a, b]$ and each $f_{n}(x) \in \mathcal{R}[a, b]$, then prove that $f(x) \in \mathcal{R}[a, b]$ and $\sum \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x$.
(c) Discuss the uniform convergence of $1-x+x^{2}-x^{3}+x^{4}-\cdots$. ; $0<x<1$.
6. If E is a subset of \mathbb{R}^{n}, then show that following statements are equivalent:
(i) E is closed and bounded
(ii) E is compact
(iii) Every infinite subset of E has a limit point in E .
7. (a) Let $\vec{f}: E \rightarrow \mathbb{R}^{m}$ be differentiable where E be an open subset of \mathbb{R}^{n}, then prove that $D_{j} f_{i}$ exists for each $i=1,2, \ldots \ldots m$ and $j=1,2, \ldots . . n$. Further
$\overrightarrow{f^{\prime}}(x)\left(e_{j}\right)=\sum_{i=1}^{m}\left(D_{j} f_{i}\right)(x) u_{i}$ where $\left\{u_{1}, u_{2}, \ldots . . u_{m}\right\}$ is standard basis in \mathbb{R}^{m}.
(b) State and prove Banach fixed point theorem.
(c) Discuss the continuity of the function $\vec{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\left\{\begin{array}{r}
\frac{x y}{x^{2}+y^{2}}, \tag{4+6+4}\\
0, x=0, y \neq 0 \\
0,
\end{array}=0, y=0\right.
$$

8. State and prove implicit function theorem.
